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Abstract

New sources of genetic diversity must be incorporated into plant breeding programs if they are to continue increasing grain
yield and quality, and tolerance to abiotic and biotic stresses. Germplasm collections provide a source of genetic and
phenotypic diversity, but characterization of these resources is required to increase their utility for breeding programs. We
used a barley SNP iSelect platform with 7,842 SNPs to genotype 2,417 barley accessions sampled from the USDA National
Small Grains Collection of 33,176 accessions. Most of the accessions in this core collection are categorized as landraces or
cultivars/breeding lines and were obtained from more than 100 countries. Both STRUCTURE and principal component
analysis identified five major subpopulations within the core collection, mainly differentiated by geographical origin and
spike row number (an inflorescence architecture trait). Different patterns of linkage disequilibrium (LD) were found across
the barley genome and many regions of high LD contained traits involved in domestication and breeding selection. The
genotype data were used to define ‘mini-core’ sets of accessions capturing the majority of the allelic diversity present in the
core collection. These ‘mini-core’ sets can be used for evaluating traits that are difficult or expensive to score. Genome-wide
association studies (GWAS) of ‘hull cover’, ‘spike row number’, and ‘heading date’ demonstrate the utility of the core
collection for locating genetic factors determining important phenotypes. The GWAS results were referenced to a new
barley consensus map containing 5,665 SNPs. Our results demonstrate that GWAS and high-density SNP genotyping are
effective tools for plant breeders interested in accessing genetic diversity in large germplasm collections.
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Introduction

Barley (Hordeum vulgare subsp. vulgare) was one of the first cereals

that human communities of the Fertile Crescent domesticated

about 10,000 years ago [1]. Barley played a key role in the

establishment of the first Neolithic farming settlements and today

is one of the world’s most important crops (FAOSTAT website.

Available: http://faostat.fao.org). Barley is essential for the

malting and brewing industries and it is an important animal

feed. It also constitutes a staple food in several regions of the world

due to adaptation to high altitudes, drought and soil salinity [2].

Renewed interest in food barley is derived from recent research

confirming the health benefits of barley in human diets [3–5].

Meeting the increasing global demands for food in a time of

climate change is agriculture’s greatest current challenge.

Increased CO2 levels are predicted to decrease global crop yields

as a consequence of overall higher temperatures. Higher

temperatures, in turn, will trigger changes in precipitation, salinity,

and both the occurrence and frequency of crop diseases and pest

outbreaks [6,7]. The genetic uniformity of current cultivars, due to

decades of breeding with elite materials, may lead to greater

vulnerability to the negative effects of climate change and it will

also limit future genetic gains [8,9]. A new generation of breeding

strategies is focused on finding novel sources of genetic variation

that can be incorporated into breeding programs and thus

continue making gains in both productivity and quality while at

the same time responding to climate change [7,10].

Being one of the most widely adapted crops, the barley

germplasm pool has the potential to contain enough genetic

diversity to breed for adaptation to different environmental
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conditions. Moreover, the ample barley germplasm resources

available worldwide [11,12] likely contain beneficial allelic

variation that new genomic and breeding technologies can exploit

[13]. The characterization and use of barley germplasm arrays for

identifying candidate genes via genome-wide association studies

(GWAS) has shown promising results. For example, the use of elite

US and UK breeding germplasm (BarleyCAP and AGOUEB,

[14]) coupled with the development of high-throughput barley

SNP assays [15] has allowed the detection of quantitative genetic

factors for biotic and abiotic stress resistance [16–19], and

agronomic and/or grain quality traits [16,20,21]. This same

strategy can be used for isolating important genes, as evidenced by

the cloning of INTERMEDIUM-C (INT-C), one of the genes

controlling spike architecture in barley [22].

The USDA-ARS National Small Grains Collection (NSGC) is

one of the largest collections of barley germplasm in the world

[12,23]. The NSGC is comprised of 33,176 barley accessions that

have been acquired and maintained over the past 100 years. These

include cultivars, breeding lines, landraces, and genetic stocks from

more than 100 countries [11,24]. A subset representing approx-

imately 10% of the entire collection (the ‘NSGC Barley Core’) was

established in 1995 – with final additions in 2006 – by randomly

selecting accessions based on the logarithm of the total number of

entries from each country of origin, with a minimum of one

accession per country [11]. The Core (as it will be referred to in

the remainder of this manuscript) has been, and is being evaluated

for various agronomic, spike and seed morphology traits, as well as

resistance to diseases and pests (see www.ars-grin.gov/npgs for a

list of traits for which data are available). Reports on phenotypic

diversity for feed quality traits [25] and resistance to four major

barley diseases and the Russian wheat aphid (RWA) [26] have

been published. Simple sequence repeat (SSR) and Diversity Array

Technology (DArT) markers were used to genotype subsets of the

Core in order to determine the probable origins of unknown

accessions [24] and to identify genomic regions associated with

RWA resistance [27]. A more thorough genetic characterization of

the Core is required to fully exploit this diverse germplasm

through association genetics.

The Triticeae Coordinated Agricultural Project (TCAP) is

focused on genetically and phenotypically characterizing wheat

and barley germplasm pools to identify valuable alleles that can be

used to develop varieties better adapted to climate change-related

stresses ([28]; The TriticeaeCAP website. Available: http://www.

triticeaecap.org/. Accessed Jan 2014). As part of this USDA-NIFA

funded project, 2,417 accessions belonging to the Core were

genotyped with a barley iSelect SNP platform, the highest-density

genotyping array currently available for barley [29]. We have used

these genotype data to (i) identify redundant accessions, (ii) assess

population structure, (iii) determine patterns of LD, and (iv)

develop mini-core sets capturing the majority of the allelic

diversity present in the Core. These subsets of accessions will be

useful for identifying the genes determining phenotypes that are

particularly expensive and/or difficult to measure. To validate the

utility of the Core for identifying loci determining quantitative and

qualitative traits, we conducted GWAS on hull cover, heading

date, and spike morphology. The GWAS was anchored by a

consensus genetic map based on merging twelve SNP-based

genetic maps. This high-density map provides a superior

framework for GWAS and the subsequent introgression of

candidate genes/genomic regions via plant breeding.

Results

Genetic Characterization of the Core and Identification of
Redundant Accessions

A complete genetic characterization of germplasm collections is

necessary to make the diversity contained therein efficiently

accessible to plant breeders. A barley iSelect Illumina SNP

platform [29], which includes 7,842 SNP markers, was used to

genotype 2,417 accessions belonging to the Core. After genotype

calling, quality control (QC) filtering was applied for both SNPs

and samples to remove low-quality markers and accessions that

performed poorly in the SNP assay (see ‘Materials and Methods’

for more information). A total of 6,224 SNP markers and 2,298

barley accessions passed the QC criteria.

Genetic redundancy is a common problem for genebank

curators. A common cause is the unwitting submission of the

same accession, with different names/designators. Based on

phenotype alone, it is not possible to identify redundant accessions

and the maintenance of duplicated materials invokes unnecessary

and costly efforts. High-throughput genotyping technologies can

cost-effectively identify redundant accessions. Based on all pair-

wise SNP calls, we detected 178 sets of two or more genetically

identical accessions involving a total of 520 individuals. For

subsequent analyses, one accession per set was retained, provided

that the geographic and/or phenotypic information assigned to

individuals within a set was consistent. Of the 520 accessions, 82

were retained and 438 were removed (Table S1).

The final set of accessions, henceforth referred as the

informative Core (iCore) contains 1,860 unique accessions from

94 countries and is comprised of 815 landraces, 781 cultivars/

breeding lines, 21 genetic stocks and 243 accessions of undefined

improvement status (Table S2).

iSelect Consensus Genetic Map Development
An integrated consensus linkage map is a necessary reference

point for characterizing and using genetic diversity. In this study,

the genetic map provided a resource to assess the distribution of

LD and divergent selection as well as the coordinates for genes and

QTL identified by GWAS. For subsequent and more compre-

hensive GWAS and isolation of candidate genes, a robust and

high-resolution linkage map is an essential resource for alignment

with the genome sequence. We took advantage of the 2,832 barley

OPA SNPs [15] represented on the iSelect array to integrate the

11 genetic maps used in the development of the current barley

consensus map [30] with the iSelect SNP map generated using the

Morex x Barke (MB) mapping population [29].

As shown in Table 1, a total of 5,665 markers were mapped into

2,032 unique consensus positions (bins). The map spans 1,113 cM,

a value very similar to the average length of the 12 maps

(1,087 cM), and provides an average density of one marker bin

every 0.55 cM. Relatively few ordering conflicts were present in

this set of linkage maps, ranging from zero for chromosomes 6H

and 7H to seven for chromosomes 2H and 4H (Table 1). This

consensus map contains 465 non-iSelect SNPs that correspond to

previously mapped SNP markers not included in the new iSelect

platform. If only iSelect SNPs are considered, we were able to map

5,200 markers, which represent an increase of 1,233 iSelect SNPs

over the previous MB map. Table S3 contains both versions of the

iSelect consensus genetic map: iSelect markers only and all SNPs.

The map and supporting data are available at the Triticeae

Toolbox (T3) database (Available: http://triticeaetoolbox.org/

barley. Accessed Jan 2014).
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PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e94688

www.ars-grin.gov/npgs
http://www.triticeaecap.org/
http://www.triticeaecap.org/
http://triticeaetoolbox.org/barley
http://triticeaetoolbox.org/barley


Population Structure of the iCore
Population structure was evaluated using the software STRUC-

TURE v.2.3.4 [31] and by principal component analysis (PCA)

using TASSEL v. 3.0 ([32]; Available: http://www.maizegenetics.

net. Accessed Jan 2014). The estimated log probability of the data

(LnP(D)) for each k between 1 and 10 increased continuously

without reaching a plateau (Figure S1.A). To identify the optimal

number of genetic clusters (subpopulations), Dk values were also

calculated as proposed by Evanno et al. [33]. The maximum Dk

value was reached at k = 2 (Figure S1.B), which mainly separates

the two types of inflorescence morphology (‘spike row type’; two-

row vs. six-row barley) and another lower peak was shown at k = 5.

PCA was also performed on the dataset. As shown in Figure S2,

the first principal component (PC1) mainly separates two-row

from six-row barleys and the subsequent components (PC1–PC4)

identified the same five subpopulations. Thus, both the STRUC-

TURE and PCA results indicate that there may be five

subpopulations (k). Figure 1.A plots ancestry estimates for each

accession in each of the five subpopulations. A membership

coefficient .0.8 was used to assign accessions to subpopulations.

Accessions within a subpopulation with membership coefficients #

0.8 were considered ‘admixed’. All accessions were subsequently

plotted according to their region of origin (Figure 1.B). If latitude

and longitude data were not available in the Germplasm

Resources Information Network (GRIN) system (Available:

www.ars-grin.gov/npgs. Accessed Jan 2014), we used the geo-

graphical centers of the respective country or state/province as the

geographic coordinates.

Most accessions within subpopulation 1 exhibit six-row spike

morphology and traced to the Mediterranean countries, Australia,

and regions of Central and South America (Figure 1.B; Table S2).

Over half of the 200 individuals belonging to this subpopulation

(115 accessions) are categorized as landraces (Table 2). Subpop-

ulation 2 (273 accessions) is composed primarily of six-row Asian

landraces, while most accessions in subpopulation 3 (274

accessions) are two-row cultivars/breeding lines from European

countries (Figure 1.B; Table 2; Table S2). Cultivars from New

Zealand, Brazil, Canada (Alberta), and some Chilean landraces

also belong to this subpopulation. Subpopulation 4 contains 207

accessions – primarily six-row cultivars/breeding lines from

Europe, the USA, and Canada. Macedonian and some Asian

landraces are also included in subpopulation 4. Subpopulation 5

contains 86 accessions (both two-row and six-row), mainly Eritrean

and Ethiopian landraces with a few from Morocco and Bolivia

(Figure 1.B; Table 2; Table S2). Half of the iCore accessions (820)

are ‘admixed’ and this ‘admixed’ cluster includes even numbers of

landraces and cultivars/breeding lines (Table 2). Admixed

landraces generally traced to the Middle East and the Caucasus

region (Figure 1.B; Table S2).

Subpopulation genetic differentiation, a tool for revealing the

effects of selection, provides a complementary approach to

understanding the main drivers of genetic differentiation in a

germplasm array. It reveals genomic regions, or loci, at which the

frequency of a certain allele in a subpopulation is significantly

different than in the others. We applied this analysis to

subpopulations 2, 3 and 4 because, based on the PCA, they are

the most genetically distinct (Figure S2). These subpopulations also

have similar numbers of individuals (Table 2). We found that

many differentially selected genomic regions are coincident with,

or near to, known loci involved in flowering time and spike row

number (Figure 2). Specifically, we found evidence for genetic

differentiation coincident with: the photoperiod gene PPD-H2 [34]

and the earliness per se locus EPS2 [29] between subpopulation 2

and subpopulations 3 and 4; the vernalization gene VRN-H1 [35]

between subpopulation 4 and subpopulations 2 and 3; and the

three main genes controlling spike row number VRS1 [36], VRS3

[37] and INT-C [22] between subpopulation 3 and subpopulations

2 and 4. Also, between subpopulation 2 and subpopulations 3–4

there is evidence for genetic differentiation in the vicinity of

RPG4/RPG5 (Figure 2), a complex locus involved in resistance to

stem rust [38].

In the remainder of this report, we will use the following

descriptors for significant associations: within means the SNP is

within the determinant gene; coincident means the SNP and the

known gene are in the same bin; near means within a few centi

Morgans (cM). Further experiments are necessary to prove that a

significant association is causal.

Linkage Disequilibrium
The distribution and extent of LD was analyzed for the whole

iCore. To account for population structure, we followed a logistic

regression approach using principal components as covariates.

The p-value of the logistic regression of any given marker with

another marker located at a specified distance will be, therefore, a

direct measurement of LD between the two markers without the

confounding effect of population structure. We analyzed the p-

value of the logistic regression between any pair of SNPs located

1–2 cM and 4–5 cM apart. In this manner, we systematically

scanned along the chromosomes and displayed the extent and

distribution of LD in two inter-marker distance intervals. Analyses

of LD patterns in the genome can provide insights into

recombination hotspots (very low LD) and selective sweeps (high

LD) [39]. As shown in Figure 3, the LD pattern varies across the

barley genome. Regions of high LD were found near VRS3 on 1H,

Table 1. Statistics of the iSelect consensus genetic map.

Chromosome Map Length (cM) #markers #bins #conflicts

1H 145 588 248 4

2H 181 978 352 7

3H 164 892 337 2

4H 130 586 230 7

5H 185 1101 313 4

6H 139 738 253 0

7H 169 782 299 0

Total 1113 5665 2032 24

doi:10.1371/journal.pone.0094688.t001
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VRS1 on 2H, INT-C on 4H and NUD on 7H at the 1–2 cM

marker distance (Figure 3.A). The VRS3 region still showed a high

LD over longer genetic distances (4 to 5 cM; Figure 3.B). In some

regions of the genome (e.g. near HvFT1 on 7H and at 142 cM on

5H), high LD was detected at 4–5 cM distance but not at 1–2 cM

(Figure 3.B). A reason for this could be a lack of mapped markers

located 1–2 cM apart.

The rate at which LD (r2) decays with genetic distance was

investigated for each of the five subpopulations. The patterns of

LD decay differ between subpopulations (Figure S3). LD decays

faster in subpopulations 1 and 3 and is followed by a plateau of r2

values. In subpopulations 2 and 4, however, there is a steadier rate

of decay with genetic distance. With the exception of subpopu-

lations 1 and 3, significance thresholds are different for each

subpopulation. Threshold values are similar between chromo-

somes from all subpopulation but subpopulation 5, which shows a

different significance threshold for each chromosome (Figure S3).

The LD plots also reveal specific regions in high LD that are far

apart. For instance, subpopulation 4 shows high LD between two

regions of chromosome 4H separated by approximately 70 cM,

which is not present in any of the other subpopulations.

Genome-wide Association Studies (GWAS)
We performed GWAS to test if the natural diversity present in

the iCore could be exploited to find genes via association genetics.

We chose three phenotypes: ‘hull cover’, ‘spike row number’ and

‘heading date’, which range from monogenic and qualitative (‘hull

cover’) to polygenic and quantitative (‘heading date’). ‘Hull cover’

refers to adherence, or lack thereof, of the hull (lemma and palea)

Figure 1. Population structure in the iCore. (A) Plot of Ancestry estimates for k = 5. Each bar represents the estimated membership coefficients
for each accession in each of the five subpopulations (represented by different colors). (B) Geographical distribution of the accessions belonging to
the iCore. A membership coefficient.0.8 was used to assign accessions (represented by circles) to the five subpopulations, and the remaining
accessions were assigned to an ‘admixed’ group.
doi:10.1371/journal.pone.0094688.g001

Table 2. Composition of the genetic clusters defined by STRUCTURE.

Genetic cluster #Landraces
#Cultivars & breeding
lines #Genetic stocks #Undefined accessions Total

Subpopulation 1 115 29 0 56 200

Subpopulation 2 199 40 0 34 273

Subpopulation 3 32 220 3 19 274

Subpopulation 4 47 135 7 18 207

Subpopulation 5 73 6 0 7 86

Admixed 349 351 11 109 820

doi:10.1371/journal.pone.0094688.t002
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to the seed and is controlled by a single locus (NUD) on

chromosome 7HL [40]. ‘Spike row number’ refers to the number

of fertile spikelets per rachis node of the inflorescence. The two-

row vs. six-row phenotype is determined mainly by VRS1 on 2H

[36] but also by INT-C on 4H [22], VRS3 on 1H [37] and a

number of loci that modify Vrs1 [41]. Heading date (or days to

flowering), is a key trait for the adaptation of barley to different

growing environments and it is controlled by many QTL

associated with vernalization requirement, photoperiod sensitivity,

and earliness per se [42]. Phenotypic data used for GWAS analyses

were obtained primarily from evaluations of the Core available at

GRIN (Germplasm Resources Information Network system.

Available: www.ars-grin.gov/npgs. Accessed Jan 2014) and are

shown in Table S2. As described in the Materials and Methods, we

also use ‘spike row number’ and ‘heading date’ data from field

trials conducted at Corvallis, Oregon, USA. All association results

from GWAS are shown in Table S4.

Figure 2. Genetic differentiation between subpopulations 2, 3 and 4. (A) Genetic differentiation measured by WPT for subpopulations 2, 3
and 4 (A). To identify which subpopulation is responsible for the high values of some markers, we run independent analyses of divergent selection
for: (B) subpopulation 2 against subpopulations 3 and 4; (C) subpopulation 3 against subpopulations 2 and 4; and (D) subpopulation 4 against
subpopulations 2 and 3. To help discriminate markers with higher values, the Y-axis displays WPT to the power of 10.
doi:10.1371/journal.pone.0094688.g002

Figure 3. Distribution and extent of linkage disequilibrium along the barley chromosomes. The –log10 of the logistic regression p-values
between any pair of SNPs located 1–2 cM apart (A) and 4–5 cM apart (B) are displayed.
doi:10.1371/journal.pone.0094688.g003
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GWAS of ‘hull cover’ found highly significant SNPs (max –

log10(q) = 140.49) with the most significant marker located at

85.87 cM on chromosome 7H (Table 3; Figure 4). These

significant SNPs are associated with the NUD locus that maps

near SNP 12_30301 (85.87 cM; Table S3) in the Oregon Wolfe

Barley (OWB) population [43]. A causative SNP in the gene

cannot be tested with the iSelect array since only hulled barleys

were used for SNP discovery.

We also identified significant SNPs in, or in high LD with, the

three major genes determining barley ‘spike row number’. The top

hit corresponds to SNP 12_30896 (91.09 cM on 2H; Table 3),

which is located on a sequenced BAC containing the causative

homeodomain-leucine zipper transcription factor gene for VRS1

([36,44,45]; HarvEST: Utilities Menu. Available: http://harvest-

web.org/utilmenu.wc. Accessed Jan 2014). SNP 11_20606, at

31.14 cM on 4H (Table 3), is in high LD with INT-C and was one

of the GWAS hits that allowed the identification and cloning of

this gene [22]. Finally, marker 11_10933 (51.06 cM on 1H;

Table 3) maps close to VRS3 [37].

Heading date is an important trait in terms of yield and

adaptation. We performed two independent experiments to

measure heading date: one with only spring lines planted in the

fall and another with the winter lines planted in mid-winter (see

Materials and Methods for details). In both GWAS, the SNPs

showing the highest significant associations were located on

chromosome 2H, BK_14 and 12_30871 within PPD-H1 [46]

and SCRI_RS_222769 and SCRI_RS_127347 coincident with

EPS2 [29] (Figure 4; Table 3).

Mini-core Sets
To create sub-sets of accessions that maximize allelic diversity

with the fewest possible numbers of accessions, we sorted all the

iCore accessions by their contribution to the average polymor-

phism information content (PIC), based on 4,558 mapped SNPs.

In a step-wise process we then identified, one at time, the

accessions whose removal from the whole set led to the highest

average PIC. If a set of n individuals shows the same or larger

average PIC value when one individual was excluded, that

indicates the excluded individual was not contributing to the

diversity of the whole set and its presence was redundant in terms

of diversity. The process was repeated with a set of n-1 individuals

and another accession was excluded. Following this procedure, a

point was reached where the removal of any other accession from

the set decreased the average PIC. This means that the excluded

line was contributing to the diversity of the whole set. With the

current dataset, we reached this point with 37 accessions (Table

S5). Choosing the accessions by their rank position in contribution

to the PIC value ensures that the selected subset provides an

informative sample of the allelic diversity in the entire collection

(Table S5). As shown in Figure 5, a sample of the 186 top-ranked

accessions (10% of the iCore) creates a mini-core comprised of 10

accessions from subpopulation 1; 14 accessions from subpopula-

tion 2; 48 accessions from subpopulation 3; 23 accessions from

subpopulation 4; 5 accessions from subpopulation 5; and 86

admixed accessions. The proportion of individuals taken from

each population was not equal, which indicates different degrees of

allelic diversity across populations. The overrepresentation of

samples from subpopulation 3, which were mostly two-row

European cultivars/breeding lines, was probably due to the

ascertainment bias in the SNP array caused by the preferred use of

these types of breeding materials for SNP discovery [29,47].

We also ranked the accessions by contribution to the average

PIC value within the spring two-row (n = 621) and spring six-row

(n = 862) accessions (Table S5). We did not rank the winter 2-row

and winter 6-row group because these groups consist of less than

200 accessions. The average PIC values for any subset from the

two spring growth habit spike morphology groups are lower than

those of subsets of the same size taken from the iCore, and some

accessions that are top-ranked within the spring 2-row or the

spring 6-row subsets are bottom-ranked in the iCore. These results

indicate that these accessions are an important source of diversity

within their groups but not in the iCore, where their genetic

background is already represented.

Discussion

Genotypic Characterization Makes Germplasm
Collections More Useful: the USDA-NSGC Model

Greater genetic diversity than is present in current elite crop

varieties will be needed to meet future production goals and the

challenges of climate change [7]. Fortunately, seeds of historical

breeding materials, locally adapted landraces and/or wild relatives

stored in germplasm collections constitute an extensive reservoir of

biodiversity from which cultivated gene pools can be enriched.

Although the ease of mobilization of favorable alleles into breeding

materials is inversely related to the degree of adaptation, advances

in genomics and molecular breeding technologies are able to

accelerate the use of exotic germplasm for crop improvement

[10,28]. However, accessing novel genetic variation in genebank

collections will require thoughtful and renewed characterization at

the genotypic and phenotypic levels [48,49].

Table 3. Significant SNPs showing the highest marker-trait associations for the phenotypes tested.

Trait SNP Chr. Position (cM) –log10(q) Effect MAF

Hull cover 12_20685 7H 85.87 140.49 –4.21 (A) 0.10

Spike row number 12_30896 2H 91.09 38.27 0.98 (A) 0.45

11_10933 1H 51.06 7.08 0.71 (G) 0.31

11_20606 4H 31.14 3.11 0.46 (G) 0.34

Heading date (spring lines) BK_14 2H 38.6 2.60 3.08 (G) 0.44

SCRI_RS_222769 2H 69.55 4.72 4.01 (A) 0.43

Heading date (winter lines) 12_30871 2H 38.6 4.70 –10.02 (G) 0.44

SCRI_RS_127347 2H 69.55 3.03 7.87 (A) 0.49

The –log10 of the FDR corrected p-values (q) for those markers are shown, together with the allele effects (allele in parenthesis) and the minor allele frequency (MAF) for
each marker.
doi:10.1371/journal.pone.0094688.t003
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The USDA-NSGC, the second largest germplasm collection of

barley in the world (the largest is located at Plant Gene Resources

of Canada in Saskatchewan; [12]), is an underused treasure of

diversity. A core collection of 2,574 accessions was created within

the NSGC to facilitate access to the diversity contained in the

whole collection. Due to the lack of genotypic information and

good morphological descriptors at that time, the Core was

developed based on geographic source information with the goal

of effectively sampling the genetic diversity in the full collection.

To access the diversity within the Core, we used the latest SNP-

based platform developed for barley [29] to genotype 2,417 barley

accessions belonging to the Core.

The curated set of SNPs was first used to address one of the

main problems of germplasm collections: redundancy. It is

estimated that, worldwide, only one third of the total number of

accessions conserved ex situ are distinct [50], and duplications

occur within and between genebanks of the same crop.

Maintaining redundant materials consumes a significant amount

of genebank resources, but the identification of these duplicates

has been neither cost-effective nor reliable until the arrival of the

Figure 4. Genome-wide association scans in the iCore. Manhattan plots of the GWAS for ‘hull cover’, ‘spike row number’, ‘heading date’ in the
spring accessions, and ‘heading date’ in the winter accessions are shown. The horizontal axes indicate the consensus map position of each SNP (black
dots), while the vertical axes indicate the 2log10 of the corrected p values (q). The dash line indicates the 0.05 threshold.
doi:10.1371/journal.pone.0094688.g004

Figure 5. Principal Component Analysis (PCA) of the iCore and distribution of the ‘mini-core’ set in the first 4 PCs. The ‘mini-core’ set
is shown in red and it is composed of the first 10% top-ranked accessions by their contribution to the polymporphism information content (PIC) value
of the whole iCore.
doi:10.1371/journal.pone.0094688.g005
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high-throughput genotyping and sequencing technologies. Over

14% of the accessions in the Core are redundant based on

information from 6,224 informative SNPs. In almost half of the

cases, redundant accessions have the same origin/passport

information. However, there are as many cases of identical

accessions coming from different geographic regions, having

different phenotypic data, and/or genetically identical accessions

having different names (Table S1). Duplicates can be handled in

different ways including: (1) keeping one accession and perma-

nently removing the rest, (2) combining the seeds of duplicated

accessions, or (3) removing identical accessions only from the

‘active’ Core [49]. For the purposes of our subsequent analyses, we

retained one accession per set of duplicates with equal passport

data and we refer to this non-redundant and non-ambiguous

germplasm array as the iCore.

The Five Subpopulations in the iCore Correspond to
Principal Germplasm Groups

The principal determinants of population structure within the

iCore are ‘spike row number’ and geographical origin. The

ancestral condition of barley is two-row; the recessive six-row form

was selected shortly after domestication [36]. Subsequently, there

has been geographic separation of the two spike morphologies,

and this separation has been reinforced by modern plant breeding

due to the general practice of breeders not making crosses between

the two germplasm groups. A second major division is growth

habit: spring and winter forms are most adapted to, and widely

grown in, different regions. Spike row number, growth habit, and

origin are usually the principal sources of structure/classification

in diverse arrays of barley germplasm (e.g. [29,51–53]).

We identified five subpopulations within the iCore and all but

subpopulation 5 were principally two-row or 6-row. Subpopula-

tion 5, which consisted primarily of Eritrean and Ethiopian

landraces, was quite distinct from other African and Asian

accessions and included both two-row and six-row types and an

intermediate type of labile barley, exclusive to this part of Africa,

whose main feature is a different number of grains at each rachis

node [54,55]. The genetic distinctiveness of barley germplasm

from the Horn of Africa has been reported previously [56,57].

Some accessions from Morocco and all the accessions from Bolivia

were included in subpopulation 5. It is likely that this genetic

relatedness is due to introduction rather than convergent

evolution, as Ethiopian and Eritrean landraces have been widely

used in breeding programs as excellent sources of resistance to

biotic and abiotic stresses [58]. Most accessions from Mediterra-

nean countries belong to subpopulation 1 and are six-rows. In

general, germplasm from this region is distinct from Central and

Northern European accessions in terms of adaptation to the mild

winters and hot summers that are characteristic of the Mediter-

ranean climate [59]. Many accessions from Central and South

America, as well as Mexico and California, belong to this

subpopulation. Cultivated barley was introduced to the Americas

by the Spanish nearly 500 years ago and the similarity in climate

and continual human migration has likely led to subsequent

introductions and exchanges [60].

Although the five subpopulations, in general, correspond to

known germplasm groups, care must be taken when considering

this collection as a representative sample of barley geographical

diversity (present or past) or as a tool to explain origin,

domestication or breeding history. There are several reasons

why caution is prudent, including: (1) accessions were not always

collected in situ (many were obtained from other collections and

the collection location was recorded as geographic origin of the

accession); (2) accessions may have been chosen based on diversity

rather than on representing the principal germplasm group(s)

grown at that location; (3) accessions described as landraces may

actually be admixed cultivars; and (4) incorrect passport informa-

tion. Examples of bias in the iCore include, but are not restricted

to, the absence of two-row accessions from Australia, where two-

row varieties prevail, and Manchurian types from the upper

Midwest of the USA, which were the foundational varieties and

have been extensively used in breeding programs [61]. There is

also overrepresentation of lines coming from Texas (USA). Texas

is not a principal barley growing area of the US: the germplasm

was donated upon closure of a breeding program. As more

accessions from the NSGC and other barley germplasm collections

are genotyped, it may be feasible to incorporate new materials into

the NSGC Core collection to better reflect patterns of germplasm

distribution and diversity.

High LD in the iCore is found in Genomic Regions that
Contain Traits Involved in Domestication and Breeding
Selection

Examination of linkage disequilibrium in cultivated barley has

been the subject of numerous studies (e.g., [51,62,63]). To date,

most of these studies have involved a limited number of individuals

in highly structured collections. LD is a measure that has to be

taken cautiously because of its variability across genetic back-

grounds and is therefore highly population-specific, and the fact

that since LD varies across the genome, it is usually considered in

terms of average values. Nonetheless, LD patterns can be a useful

tool for understanding recombination, breeding and selection

history. LD also has implications for the resolution of GWAS at

any given marker density and significant LD values between

physically unlinked markers may give an idea of the number of

false positives.

When we plotted the p-value of a logistic regression between

pairs of markers located at a certain distance (between 1–2 cM

and 4–5 cM apart), we identified varying degrees of LD across the

genome. The fixation of natural mutations by selection can have a

large impact on the patterns of LD in nearby regions [39]. Positive

alleles at important loci would be fixed during domestication and

breeding, and it is thus expected that regions with low marker

density (lack of polymorphism) surrounded by regions with high

LD would be diagnostic of selective sweeps. We found genomic

regions that may be evidence of selective sweeps - important for all

accessions regardless of subpopulation membership, geographic

origin, or morphological attributes - for traits defining cultivated

barley: VRS3 on 1H, VRS1 on 2H, INT-C on 4H and NUD on 7H

(Figure 3.A). The differential selection at these and other loci

involved in flowering time and disease resistance between

subpopulations in the iCore can be responsible of the high WPT

values for SNPs located in those genome regions (Figure 2).

LD varies between subpopulations. The fastest decay occurs in

subpopulations 1 and 3. While most accessions in subpopulation 1

are landraces, subpopulation 3 contains mainly cultivars and

breeding lines (Table 2). It is generally understood that cultivated

barleys have higher LD than landraces and wild barleys [64].

However, breeding strategies also vary and, although most

breeders tend to cross closely related germplasm [65,66], many

times breeding involves more purposeful crossing with exotic

materials [67]. Due to the wide geographical distribution of

accessions within subpopulations, the lack of knowledge about the

breeding strategies involved in their development and the fact that

they are not true natural populations, it is difficult to draw any

conclusion from the LD found in each iCore subpopulation.
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GWAS Identifies Genes Determining Traits of Varying
Complexity

High-throughput genotype data coupled with phenotypic data

in diverse germplasm arrays can be used to identify marker-trait

associations via GWAS [68]. The more diverse the germplasm,

however, the more important it is to account for structure to

reduce the false discovery rate [69]. Statistical methods are

constantly being improved to provide accurate predictions (e.g.

[70,71]). Given these considerations, we chose phenotypic data

varying in their complexity of inheritance to assess the utility of

GWAS in the iCore. Some of the genes determining these traits

have been cloned, providing an opportunity for validation of

significant marker-trait associations identified in GWAS. A

number of recent advances in barley genomics (reviewed in [28])

facilitate the gene discovery process. Starting with significant SNP

associations in GWAS one can, in many cases, efficiently identify

one or more candidate genes for the target trait.

The presence or absence of adhering hulls is a simply inherited

trait (‘hull cover’) determined by the NUD locus on chromosome

7HL that encodes an ethylene response factor (ERF) family

transcription factor [40]. Since the nud allele is only present in

subpopulation 2 (principally composed of accessions from Asia,

where the hull-less trait is associated with higher levels of human

food use than elsewhere in the world), the mixed linear model

properly removed false associations due to structure and we

identified significant marker-trait associations at the corresponding

chromosome region (Figure 4). Although GWAS identified the

genomic region where the NUD locus is, if the NUD gene had not

been previously reported identifying it based on GWAS and the

hulled/hull-less phenotype data would have been challenging due

to the a number of factors including: (1) the lack of causative

SNP(s) because of the ascertainment bias in the iSelect SNP data;

and (2) the poor map resolution due to extensive LD found on

chromosome 7H in the vicinity of NUD (Figure 3). In the case of

‘spike row number’, where at least three determinant genes are

reported in the literature (VRS1, INT-C, and VRS3), GWAS

narrowed down gene targets for cloned genes to a BAC clone

(VRS1) and tight linkage (INT-C). The third gene, VRS3, has not

been identified yet but mapping data confirms that it is located

near the region identified by our GWAS (Waugh R., unpublished

data).

‘Hull adhesion’ and ‘spike row type’ are qualitative traits and

the effectiveness of GWAS was validated in that it correctly

identified chromosomal regions previously reported to contain loci

and/or genes determining each trait. In the case of the ‘hull

adhesion’ trait, the two phenotypes are quite discrete and easy to

score (e.g. the caryopsis has an adhering hull or it doesn’t). The

GRIN data for this trait are binary. There are, however,

quantitative differences in the degree of hull adherence within

the adhering hull class [72] and the significant SNPs associated

with ‘hull adhesion’ on regions other than the NUD locus are

therefore possible candidates for this quantitative variation. ‘Spike

row type’ is somewhat more challenging to phenotype than ‘hull

adherence’, as there are intermediate types as a result of different

VRS1 alleles (labile barleys, [55]) and interactions with up to ten

other intermedium (int) loci distributed across the genome [41].

Heading date, a surrogate measurement of flowering time, is a

critical trait in terms of barley adaptation and shows the most

complex inheritance of the three traits we studied. At least 6 major

genes/QTL are reported to determine heading date in the

literature [73,74] as well as numerous small-effect QTL distributed

across the whole genome. At the same time, heading date is

relatively straightforward to phenotype under field and greenhouse

conditions and therefore has a high heritability [75]. In this study,

heading date was phenotyped separately for the ‘spring’ and

‘winter’ growth habit accessions in the NSGC core due to seed

availability constraints. The latter were fall-sown (2011) and the

former sown in mid-winter (2013) and thus the results are

somewhat confounded by photoperiod duration and temperature.

We performed separate GWAS analyses for the two groups of

accessions.

The classification of growth habit was made by NSGC curators

based on phenotype (vernalization sensitivity under non-vernaliz-

ing conditions) (Table S2). In our analysis, members of the ‘spring’

sets are found in all the subpopulations. The ‘winter’ accessions

belong mostly to subpopulation 2 (37% of the accessions in this

subpopulation are winter), subpopulation 4 (19%) and the

admixed group (18%). Very few winter accessions are present in

subpopulation 1 (6%), subpopulation 3 (1%) and none in

subpopulation 5. GWAS of both datasets identified PPD-H1

(SNP within the causative gene), a pseudo-response regulator

(PRR7) involved in flowering time under long day conditions [46].

This gene is a key determinant of adaptation because the

insensitive allele prolongs flowering under long-day conditions,

thus maximizing yield potential. The GWAS also identified SNPs

in tight linkage with EPS2, a homolog of Antirrhinum CENTROR-

ADIALIS which is a main determinant of adaptation in spring

barleys [29]. GWAS of ‘heading date’ in the winter accessions also

identified this gene (Figure 4). Interestingly, we found evidence for

differential selection at this locus in subpopulation 2 (Figure 2). As

expected given the fall and winter planting dates ensuring ample

opportunities for vernalization, there were no associations with the

major vernalization genes VRN-H1 or VRN-H2.

Mini-core Sets Effectively Sample Genetic Diversity
Even after removal of redundant accessions, the collection is

too large for most breeding programs to sample in a cost-

effective fashion. We developed objective criteria, based on

SNP diversity, for sampling the full collection to create mini-

core sets, a procedure that will be of utility to all who seek to

efficiently perform phenotyping of germplasm collections [76].

Our method, which is based on calculating the PIC value for

each marker and the average for the whole set of markers, is a

progression from structured random sampling, which involves

dividing the whole collection into groups based on morpho-

logical, ecological or geographical criteria and then selecting a

weighted number of individuals within each group [77]. The

optimum population size is a question that any user of a

collection faces. Once a user determines how many lines can

be effectively phenotyped, this number can be selected from

the iCore based on the rank. It is not recommended to select a

number of lines smaller than the rank when the PIC reaches its

maximum (37 when considering the whole iCore). However,

practical use of a subset for GWAS will require more than this

minimum number of accessions. We have also shown that a

priori selection of a subset of accessions from the whole

collection based on a certain criteria (e.g. ‘spike row type’) will

lead to different mini-core sets of accessions. It is worth

mentioning that, when selecting a ‘mini core set’, researchers

should be aware of the ascertainment bias in the iSelect SNP

array, which will lead to a higher representation of the

breeding materials than landraces. Information regarding

subpopulation membership coefficients, geographical origin

and phenotypic data provided for each accession (Table S5)

can help choosing sets depending on the purpose of the mini-

core collection. In the future, either a deeper SNP discovery

panel or a genotyping by sequencing (GBS) approach [78]
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should be used to accurately estimate diversity in more diverse

sets of germplasm.

In summary, we have shown that the iCore is a highly diverse

collection of barley genetic resources whose effective use will be

maximized due to the availability of high density SNP data. The

SNP data provide objective criteria for removal of redundant

accessions and, as needed, for subsampling ‘mini-core’ sets of

accessions for more efficient, cost-effective, or in-depth phenotyp-

ing. The high-throughput genotyping data – coupled with a

newly developed high-density genetic map – were used to assess

patterns of population structure and linkage disequilibrium that

we applied to gene discovery using GWAS. For each of three

model traits, GWAS identified significant marker-trait associa-

tions. The SNPs involved in these associations were in genes

known to be responsible for the phenotype, physically linked to

determinant genes, and tightly linked to determinant genes/loci.

Genotypic and phenotypic data, together with the iSelect

consensus map, have been uploaded to T3 (The Triticeae

Toolbox website. Available: http://triticeaetoolbox.org/barley/.

Accessed Jan 2014) to accelerate the utilization of the genetic

diversity contained within the USDA’s remarkable collection of

barley accessions.

Materials and Methods

SNP Genotyping and Data Curation
A total of 2,417 barley accessions belonging to the USDA-

NSGC Barley Core were genotyped using the Infinium iSelect

SNP assay according to the manufacturer’s protocol (Illumina Inc.,

San Diego, CA, USA). The whole core collection contains 2,574

accessions but only 2,417 were genotyped. Automated SNP calling

was performed using the cluster algorithm implemented in

GenomeStudio v.2011.1 software (Illumina Inc., San Diego, CA,

USA). SNP calls were manually inspected to verify their accuracy.

Briefly, genotype clusters were manually adjusted for those SNPs

with inaccurate cluster definitions, and SNPs producing theta-

compressed clusters were excluded. Heterozygous SNP calls were

converted to missing values. Standard QC filters were applied to

the resultant dataset to remove low-quality SNPs and samples:

SNPs with missing calls in .10% accessions as well as accessions

with missing calls in .10% of the SNPs were removed from

further analysis.

The curated SNP dataset consisting of 6,224 SNP markers was

used to identify potential duplicates in the NSGC barley core. A

pairwise similarity matrix based on simple matching coefficients

was built and accessions sharing all alleles were exported. Those

genetically identical accessions were also confirmed by DArT

markers previously scored in the collection (JM Bonman, personal

communication). Table S1 contains the list of redundant

accessions found in the collection.

Development of the iSelect Consensus Map
The 11 linkage maps used by Muñoz-Amatriaı́n et al. [30] and

the iSelect MB map generated by Comadran et al. [29] were

integrated using LPmerge ([79]). This software has two parame-

ters: one is the maximum interval size between bins to include in

the objective function, which was varied between 1 and 4; the

second is the weights to apply to each map. For each maximum

interval, a consensus map was first constructed using equal weights

and then again using the population sizes as weights because

linkage maps based on more progeny have better resolution. For

each chromosome, the best consensus map was chosen based on

two criteria: (1) minimizing the average root mean-squared error

(RMSE), and (2) achieving a total map length comparable to the

mean of the linkage maps (Table S6).

Six markers were present in two different linkage groups and

were curated manually. The duplicates for markers 1_0716,

2_1055, 1_0349, and 2_0029 were deleted based on flow-sorting

results or synteny in the same manner as Muñoz-Amatriaı́n et al.

[30]. The conflicting chromosome assignments for markers

2_0207 (4H and 7H) and 2_0883 (4H and 5H) arose from the

inclusion of the iSelect MxB map and thus were not present in

the previous consensus map. Both markers were arbitrarily

assigned to 4H to agree with the previous consensus genetic map

[30].

Population Structure and Genetic Differentiation
Analyses

The software package STRUCTURE v.2.3.4 [31] was used

to infer the population structure of the NSGC barley core

under an admixture model. SNPs with minor allele frequencies

(MAF) ,0.01 were excluded from the analysis. A subset of

1,719 SNPs representing one marker per locus was then chosen

to reduce running time. STRUCTURE was run 5 times for

each hypothetical number of subpopulations (k) between 1 and

10, with a burn-in period of 25,000 and 25,000 Monte Carlo

Markov Chain (MCMC) iterations. LnP(D) values were plotted

and Dk values were calculated according to Evanno et al. [33]

to estimate the optimum number of subpopulations. After

estimating k, a new run using a burn-in period of 100,000 and

100,000 MCMC was used to assign accessions to subpopula-

tions based on a membership probability greater than 0.80.

Those accessions with a membership probability lower than

0.80 were assigned to an ‘admixed’ group. Principal Compo-

nent Analysis (PCA) was also conducted in TASSEL v. 3.0

([32]; Available: http://www.maizegenetics.net) on the same

dataset.

Non-admixed accessions from these subpopulations were used

to study the population genetic differentiation WPT for each SNP.

We used AMOVA results generated in the GenAlEX 6.5 with

1,000 permutations to estimate WPT as

WPT~
VAP

(VAPzVWP)

where VAP is the variance among subpopulations and VWP is the

variance within subpopulations.

Linkage Disequilibrium Analysis
TASSEL 3.0 ([32]; Available: http://www.maizegenetics.net.

Accessed Jan 2014) was used to calculate the linkage disequilib-

rium (LD) parameter r2 and corresponding p-values (two-sided

Fisher’s exact test). For the calculation of LD, markers with minor

allele frequency (MAF) below 0.05 and individuals with a

percentage of admixture above 80% were excluded. The r2

values were calculated for each chromosome for the different

subpopulations and plotted against genetic distance (cM). A

hundred thousand pairwise r2 were calculated between randomly

selected and physically unlinked markers. The distribution of

those r2 values was power transformed to approach normality and

the parametric 99th percentile of the distribution was used as a

threshold to consider that LD was likely caused by genetic

linkage.

A logistic regression model was used to investigate the

relationship between any two markers (binary variables) as a

measurement of LD. The analysis was done using SAS v9.3
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PROC LOGISTIC (SAS Institute, Cary NC, USA). The

advantage of this analysis over other traditional measurements

of LD - such as r2 - is that the logistic model allows the use of

co-variables in the analysis. In our case, we included the first

eleven principal components as co-variables. The significance

of the regression is, therefore, a direct measurement of LD

without the confounding effect of population structure [63].

The logistic model for a given response marker (M0) was

evaluated using adjacent markers, one at a time, as regressors.

To assess the variation of p-values as an indirect measure of

LD decay at the position M0, we used regressors located at two

intervals, between 1 and 2 cM and between 4 and 5 cM from

M0.

Genome-wide Association Analysis
GWAS was performed on the iCore using the Q + K method

implemented in TASSEL v. 3.0 as a mixed linear model (MLM)

function [71]. Population structure (Q matrix) was accounted for

using the result of STRUCTURE for k = 5, and relatedness of

accessions was corrected using a kinship matrix (K matrix)

generated in TASSEL using SNPs with MAF.0.01. A false

discovery rate (FDR; [80]) was used for multiple testing correction

of the GWAS results in SAS v9.3 using the MULTTEST

procedure. The -log10 of the adjusted p-values (q-values) were

plotted against the consensus genetic position on each chromo-

some.

Most of the phenotypic data used for GWAS analyses were

obtained from evaluations of the NSGC Barley Core

germplasm found at GRIN (Germplasm Resources Informa-

tion Network system. Available: www.ars-grin.gov/npgs. Ac-

cessed Jan 2014) and are shown in Table S2. Heading data

were collected at Corvallis (Oregon) where the spring lines

(n = 2051) were planted in the fall of 2011 and winter lines

(n = 374) in the winter of 2013. Both experiments were

analyzed independently. Missing ‘spike row type’ data in

GRIN were completed using the data from the Corvallis

experiment, where the trait was scored as ‘2-row’ or ‘6-row’.

The two data sets were in agreement for all but 25 accessions,

in which case we used the data obtained from the field trials at

Corvallis, OR (Table S2).

Mini-core Set Development
To select a subset of accessions that maximize the diversity of

the collection, all the accessions of the collection (n) were sorted

according to their general contribution to the average polymor-

phic information content (PIC) of 4,558 mapped SNPs.

PIC~1{
Xk

i~1

p2
i

pi is the frequency of the ith allele k is the No. of alleles.

In a step wise process, all the accessions were individually

removed from the dataset and the average PIC was re-calculated.

The accession with the lowest contribution to the PIC (the one

whose removal most increased the average PIC of the collection)

was removed from the next step analysis that starts with n-1

accessions. Sorting the accessions in this way makes it likely that a

subset of lines taken from the top part of the list is the subset that

represents the allelic diversity of the whole collection. The

calculations were done using a Visual Basic macro built ad hoc in

MS Excel 2013, available at: http://barleyworld.org/breeding-

genetics/analysis (accessed 2014 March 24).

Supporting Information

Figure S1 Exploration of the optimal number of genetic
subpopulations (k) in the iCore. (A) Log probability of the

data (LnP(D)) for each k between 1 and 10. (B) Dk values calculated

as proposed by Evanno et al. [33] as a function of k.

(TIF)

Figure S2 Principal Component Analysis (PCA) of the
NSGC Barley iCore. The first plot shows the proportion of

variance explained by each PC, and the next three plots represent

the first four PCs. Accessions are colored by the result of

STRUCTURE for k = 5.

(TIF)

Figure S3 Linkage disequilibrium (r2) decay over ge-
netic distance (cM) for the seven barley chromosomes.
Significance thresholds are represented as horizontal lines.

(TIF)

Table S1 Potential duplicates in the NSGC Core. Each set

of accessions represents potential duplicates based on the SNP

information from iSelect genotyping. Accessions marked in yellow

were kept, while the rest were discarded.

(XLSX)

Table S2 Information on the 1,860 accessions belonging
to the iCore. For each accession, phenotypic and geographic

information have been added when available, as well as the

subpopulation each accession belongs to (1 to 5) and the

proportion of each of the five subpopulations (P1–P5). ‘AD’

indicates admixed individuals.

(XLSX)

Table S3 iSelect consensus genetic map. Two versions of

the map are presented: iSelect markers only and all SNPs.

(XLSX)

Table S4 GWAS results of ‘hull cover’, ‘spike row
number’, and ‘heading date’.
(XLSX)

Table S5 iCore accessions ranked by their contribution
to the average Polymorphism Information Content (PIC)
value of the whole set. The reported PIC value of an accession

with rank n correspond to the average PIC value of the set with

ranks 1 to n-1. The spring 2- and 6-row accessions belonging to the

iCore are also sorted by their contribution to the diversity of the

corresponding group.

(XLSX)

Table S6 Effect of maximum interval size on total map
length and average root mean-squared error (RMSE)
between linkage maps and consensus map.
(XLSX)
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